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The escape rate is calculated for a piecewise linear map in the presence of two additive weak noises:
Gaussian white noise (thermal noise) and Ornstein-Uhlenbeck noise (barrier fluctuations). A transition
state theory yields the exact escape rate in the weak noise limit. By including the dominant finite-noise
corrections we find very good agreement with numerical simulations. Of particular interest is the
behavior of the escape rate k (7) as a function of the correlation time 7 of the Ornstein-Uhlenbeck noise.
We show that the qualitative behavior of k (7) at any fixed thermal noise intensity is the same as in the
absence of thermal noise. Whether k (7) exhibits a local maximum (resonant activation) is determined
by the detailed 7 dependence of the colored-noise intensity: e.g., resonant activation is found (at a corre-
lation time of order 1) if the integral autocorrelation of the colored noise is kept 7 independent but not if
the variance is kept 7 independent. In the continuous-time limit neither of these cases shows resonant

activation.

PACS number(s): 05.40.+j, 02.50.—r, 82.20.M;j

I. INTRODUCTION

Nonlinear dynamical systems with fluctuating parame-
ters in a thermal environment have been investigated in
various physical contexts [1-3]. Only very recently,
Doering and Gadoua [4] detected that the escape rate
over a fluctuating barrier may exhibit a maximum reso-
nant activation as a function of the correlation time of
the barrier fluctuations. They considered an overdamped
Brownian particle driven by Gaussian white noise in a
piecewise linear double-well potential whose slope
switches between two values according to a dichotomous
process. Their limitation to extremely large barrier fluc-
tuations could be relaxed in subsequent investigations of
the same model [5,6], showing that resonant activation
occurs for arbitrary weak thermal noise and barrier fluc-
tuations at correlation times comparable to the inverse
escape rate. Some light on the basic mechanism leading
to the astonishing phenomenon [7] of resonant activation
was shed by the study [8] of even much simpler models
which, under appropriate conditions, exhibit the same
behavior.

In this paper we address the question of whether reso-
nant activation can also be found for other kinds of po-
tentials and barrier fluctuations than in the Doering-
Gadoua model [4-6]. We study a discrete-time dynamics
additively coupled to thermal fluctuations in the form of
weak Gaussian white noise. In order to arrive at rigorous
results, the deterministic part of the dynamics is de-
scribed by an extremely simple map consisting of two
linear pieces, and the barrier fluctuations are modeled by
weak additive Ornstein-Uhlenbeck noise. We also discuss
the continuous-time limit of our model corresponding to
a piecewise parabolic potential with a cusp. In continu-
ous time the same kind of system has recently been inves-
tigated [9] within the unified colored-noise approximation
for general potentials and multiplicative couplings of the
Ornstein-Uhlenbeck noise.
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We proceed as follows: In Sec. II our discrete-time
model is introduced. Section III starts with a brief sum-
mary of the calculation of the escape rate which is ela-
borated in detail in the Appendix by means of a transi-
tion state theory. The central rate formula is given in
Eqgs. (8)—(10), the discussion of which is carried out in the
remainder of Sec. III. Section IV deals with the
continuous-time limit of our model. Finally, Sec. V gives
a summary and our conclusions.

II. THE MODEL

We consider the following two-dimensional Markov
process in discrete time n:

Xps1=f Gy ) VK ED 1)

yn+1:Ayn+‘/-K-;§(nZ) ’ (2)

where £, i=1,2, is identically distributed Gaussian

white noise,
i 1 ’§(“2/£
P ()= - _ n
(&) By e
of small noise strength €. In (1), x, represents a particle
under the influence of weak thermal noise £ in a fluc-
tuating environment described by y,. The non-negative
coupling strengths K; of the white noise are typically of
order 1 but the limiting cases that one of them vanishes
are also of certain interest.
As for y,, it follows from (2) and (3) that

L (EE =28y . )

Dnt14n)=AVn4190)
for / 20 and, thus,

(Ypayn ) =AKp2) . 4)
We restrict ourselves to the case that the y process de-

scribed by (2) is in the stationary state, which is possible
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only for
|4]<1. (5)

Then (2) and (4) imply that y, are Gaussian random num-
bers of vanishing mean and exponentially decaying corre-
lation, i.e., they represent Ornstein-Uhlenbeck noise. For
the sake of brevity we will call A4 the correlation in con-
trast to the correlation time, which is given by
[In| 4|77 L

As mentioned in the Introduction, in order to arrive at
rigorous results, the map f(x,y) in (1) is assumed to be of
the very simple form

Bx +y for x=1

FEI= 124 B(x—2)+y forx>1. (©)
With the restriction
Bl <1, (7)

it follows that in the absence of any noise, i.e., K;=0 and
v, =0, the deterministic dynamics (1) has two point at-
tractors at x =0 and 2. In the presence of weak noise a
particle still spends most of its time in a close neighbor-
hood of x =0 or 2, but once in a while it switches be-
tween these domains. The probability per time step to
switch is given by the escape rate k which is the central
quantity throughout the following investigation. Note
that without thermal noise, K; =0, our model reduces to
the discrete-time version [10] of the common escape
problem for a particle that is additively disturbed by
weak Ornstein-Uhlenbeck noise [11].

III. DISCUSSION OF THE ESCAPE RATE

The calculation of the escape rate is carried out in the
Appendix by means of a transition state theory. Here we
only summarize the main steps. First, the invariant den-
sity for the fully linear system (1)—(3), (A1) is calculated,
resulting in a Gaussian distribution centered at the ori-
gin. Then it is shown that the pseudoinvariant density
describing the escapes in the piecewise linear model (6)
agrees with the invariant density of the fully linear sys-
tem (A1) in those regions which mainly count for the
rate. Finally, it is pointed out that only single crossings
of the basin boundary at x =1 have to be taken into ac-
count for the rate, whereas recrossings are negligible due
to the discontinuity of the map (6) at x =1. The final rate
formula is given by

172
arde | 1 e [Rlag | ®)
— 42)(1— )
Ap= (12 A“)X1— AB)(1—B*) , ©)
(1—A4°)1—A4B)K,+(1+ 4AB)X,
€ |= — E
R Ad fdxexp{ x1+4A¢H
—1—1l e 13} €
2A0 22| A9
3
1351 €
222 |20 + . (10
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The dominating weak noise behavior of the rate, i.e.,
(8) without R (e/A¢), is of the same structure as was de-
rived in [12] for general maps with point attractors which
are disturbed by weak Gaussian white noise: it consists of
an Arrhenius factor and a preexponential factor propor-
tional to V'e. The complete right-hand side (rhs) of (8)
represents the exact rate up to exponentially small
corrections in €, i.e., up to a factor of the form
1+0(e /% with an e-independent ¢ >0. Thus,
R (e/A¢) accounts for all nonexponential finite-€ correc-
tions of the dominating weak noise behavior. Note that
the series expansion of R (e/A¢) in (10) is semiconver-
gent. Interestingly enough, the rate (8) including the
definition (10) of R (e/A¢) is exactly identical to the re-
sult for a continuous piecewise linear map in the presence
of additive Gaussian white noise [13] (of course, with a
different A¢). Clearly, the rate (8) is invariant under
A+—— A and B+—— B, which can be easily understood in
terms of most probable escape paths as introduced in the
Appendix. The comparison of the rate formula (8) with
numerical simulations is given in Table I.

Next we consider the behavior of the rate as a function
of the correlation A. Apart from the finite-e corrections
R (e/A¢), the inverse rate (8) shows the same qualitative
behavior (e.g., extrema) as A¢. In particular, resonant
activation corresponds to a minimum of A¢. It thus
suffices to study A¢ as a function of 4. We furthermore
take over the usual assumption [4-6,9] that the coupling
strength K, of the thermal noise is independent of the
correlation A4 of the barrier fluctuations, whereas the
coupling strength K, of the Ornstein-Uhlenbeck noise
may be a nontrivial function of the correlation,
K,=K,(A).

The quantity A¢ in (9) can be rewritten as

1—2 |~
—1 ] —1

s=| |1 7%,
=[(Adg,=0) ' +(Agg =) '17" . (1n

(1— A%)(1— AB)(1—B?)

+
(1+ 4B)K,

Since A¢K2=0 is A independent, A¢ as a function of A4
has an extremum if and only if A¢ K, =0 has an extremum.

An extremum of A¢ is most pronounced for K, =0 and
flattens with increasing K ;. In other words, every kind of
resonant activation is already present without thermal
noise, K; =0, and gets even weaker in the presence of the
thermal noise. Thus, in our model resonant activation is
not the effect of an interplay between thermal and barrier
fluctuations but rather a property of the rate for the es-
cape problem driven by colored noise only, which sur-
vives in the presence of additional white noise.

It is clear that by an appropriate choice of K,( 4) arbi-
trary “resonant” extrema of A¢ in (9) can be induced.
For example, from (11) one easily sees that a local
minimum of A¢ and thus resonant activation will be
found whenever K,( A) disappears faster than propor-
tional to 1— A2 for A—=*1. On the other hand, if
K,(A) stays larger than proportional to 1— A2 for
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A — =1, then the opposite of resonant activation, name-
ly, a local maximum of A¢ will arise. The appearance of
additional local extrema of A¢ in the above cases and the
behavior of A¢ for other asymptotics of K,(A) for

TABLE 1. Comparison of the theoretical escape rate ki,
(8)-(10) with results k,,, from numerical simulations of the
Langevin equation (1)—(3) and (6) for different values of the
correlation A and the slope B. The coupling strengths are
chosen K, =1 and K,=1— 4% The latter choice yields a con-
stant variance of the barrier fluctuations, [see text below (12)],
and a A¢ in (9) that stays finite but different from the case
K,=0 for A—=*1 and is invariant under 4+>— A, B——B.
The Table shows the relative difference in percent
100(k, —kqum )7k, between the numerical and the theoretical
rates for three different values of the noise strength e. For any
value of 4 and B the noise strength was chosen such that the
quantity A¢ /e equals 2, 5, or 8. Thus the theoretical rates k,
in (8) are equal to 2275...X1072, 7.827...X107% or
3.167...X 1075, respectively. In order that the initial points
(x0,¥0) in the Langevin equation (1) and (2) be distributed ac-
cording to the pseudoinvariant density, every realization was
started at the origin, followed by 100 preliminary iterations.
The resulting position was taken as initial point (x4,y¢) if x¢ <1
and rejected else. Then the escape time n was measured until x,,
arrived in the neighborhood [1.5,2.5] of the point attractor at
x =2 for the first time. The rate k,,, was calculated as the in-
verse mean escape time from 10* realizations, implying a statist-
ical uncertainty of 1%. Even for the rather modest values of
A¢ /€ considered here, the agreement between the numerical
and theoretical rates is very good except for B close to ==1. The
latter discrepancies can be attributed to recrossings of the basin
boundary at x =1 which are neglected in the theoretical rate.
Also the prediction that the relative differences between the nu-
merical and theoretical rates are of order e /¢ with an e-
independent (but 4 and B dependent) ¢ >0 turns out to be
satisfied rather well.

A

B AEQ -09 —-06 —03 00 03 06 09
—0.9 2 77 66 64 63 63 62 63
—0.9 5 68 47 42 41 40 41 42
—0.9 8 60 34 28 26 26 26 25
—0.6 2 50 23 16 17 17 15 29
—0.6 5 30 9 4 3 1 5 5

—0.6 8 16 2 0 0 0 0 0

—0.3 2 34 10 5 2 6 9 32
—0.3 5 15 3 1 -1 0 1 6

—03 8 6 8 1 0 2 -1 1

0.0 2 9 12 5 5 6 15 43
0.0 5 8 0 1 1 1 3 12
0.0 8 1 —1 0 0 1 1 3

0.3 2 29 21 18 18 20 29 57
0.3 5 16 8 4 1 4 9 27
0.3 8 10 3 2 —1 1 3 11
0.6 2 44 42 41 41 41 49 70
0.6 5 28 22 16 16 17 28 51
0.6 8 23 16 7 5 10 16 35
0.9 2 80 80 80 80 81 8 89
0.9 5 64 64 63 62 63 68 82
0.9 8 52 51 49 47 49 57 76
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A —=*1 depend on the details of K,( 4) and possibly also
on the particular value of B.

Unfortunately, our model is too far from a realistic
physical situation to suggest a certain kind of function
K,(A). Instead we will discuss in more detail three
different choices for K,(A) which are of interest for
themselves and are often considered in the literature.
The discussion is given in terms of A¢, but, as seen above,
the same properties carry over to Ati)K1 —o describing the

escape problem with Ornstein-Uhlenbeck noise alone.

We first address the case that K, is A independent.
Then A¢ in (9) as a function of 4 €(—1,1) has a max-
imum at —1< A4, <0for B>0andat0< 4, <1 for
B <0, is strictly monotonous on both sides of 4., and
vanishes for 4 —*1. In agreement with the above gen-
eral discussion, we thus find the opposite of resonant ac-
tivation, namely, a minimum of the escape rate (8) as a
function of the correlation A (see Fig. 1).

Next we choose K,( 4) such that the variance {y?) of
the barrier fluctuations is A independent in analogy to
the Doering-Gadoua model [4-6]. From the stationary
distribution (A15) of the barrier fluctuations derived in
the Appendix, we find that

eK,(A)

D= (12
1% 201—A4?) )

Thus, we have
K,(4)=(1—AHK,(0) .

It follows that A¢ in (9) is strictly monotonously decreas-
ing or increasing for B >0 or B <0, respectively, and
stays finite for 4 —*1. In other words, normalizing the
barrier fluctuations in analogy to the Doering-Gadoua
model does not lead to resonant activation in our model
(see Fig. 1).

We finally consider the case that the integral auto-
correlation $°_,{(y,y,) of the barrier fluctuations is

0.1

0.01

-1 -0.5 0 0.5 1

FIG. 1. The escape rate k in (8) as a function of the correla-
tion 4 for B=0.8, K;=1, and €=0.05 with fixed coupling
strength K, =1 (dashed curve), fixed variance K,=(1—A4?)
(dot-dashed curve), and fixed integral autocorrelation
K,=(1— A%)(1— A) (solid curve) of the barrier fluctuations.
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FIG. 2. A¢ in (9) as a function of the correlation A4 for
B=v5-2=0.236.. ., 0.4,05,...,0.9 (from above). The cou-
pling strengths in (9) are chosen K;=1 and
K,=(1— A%)(1— A); cf. (13). Note that a moderate minimum
in A¢( A) yields a very pronounced maximum (resonant activa-
tion) of the rate (8) for small noise strengths € (see also Fig. 1).

kept A4 independent. This choice is common in studies of
continuous-time systems with colored noise because it
gives a sensible white noise limit [11]. With (4) and (12)
we arrive at

K,(A4)=(1— A% (1— A)K,(0) . (13)

Note that with (13), A¢ in (9) is no longer invariant under
A+—— A4 and B——B. In the limit 4 — —1, the quanti-
ty A¢ stays finite. For A4—+1, we find that
Ap=A¢ K,=0 i.e., the barrier fluctuations disappear in
this limit. Clearly, A¢=A¢ k,=o0 Stays finite provided
K, >0. Moreover, A¢ has a local minimum 4, within
the allowed domain (—1,1) of correlations (5) for

v5—2=0.236... <B<1
given by
1—V'2(1—B)
Apin= —5 - (14)
The local minimum is most pronounced, i.e.,

Ap(A ==x1)/A¢(A,;,) takes the largest values for
B — 1, see Fig. 2. Thus, for fixed integral autocorrelation
of the barrier fluctuations, resonant activation can be

C

bx%+r
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found in our model (see Fig. 1). Except for B very close to
1 or V5—2, the resonant correlation time
[In| 4,1 71177, [see text below (5)] is of order 1.

IV. CONTINUOUS-TIME LIMIT

Let us denote by At the time step in the discrete-time
model (1)-(3) and (6). Then the continuous-time limit is
found [10,14] by introducing x(t=nAt):=x,,
y(t=nAt):=y,/At, b:=(1—B)/At, T:=At/(1—A),
D,:=eK,/[4At], and

D,:=€K, /[4At(1— A)?*]

and then letting Az go to zero. One recovers the common
Langevin equations [9,11]

x()=—U'[x(1)]+y(t)+V'2D&(1), (15)
V2D,

T

y(t)=—%y(t)+ 1), (16)
where £;(¢), i =1,2, is Gaussian noise of vanishing mean
and correlation

(E(DE;(s)) =8,;8(t —s) . an

The correlation time of the Ornstein-Uhlenbeck noise
y(t) is given by 7, whereas the quantities D, and D,
characterize the strengths of the white noise £,(¢) and the
colored noise y (¢) in (15), respectively. In our model, the
potential U(x) is piecewise parabolic with a cusp at
x=1:

%xz for x <1

Ulx)= (18)

%(x —2)* for x>1.

Concerning the great practical importance of cusp-
shaped potentials, we refer to Sec. 7.E.2 of the review
[15]. The additive Ornstein-Uhlenbeck noise y (¢) in (15)
leads to an asymmetric fluctuation of the potential depths
and the location of the minima but not of the curvatures
nor of the position of the cusp.

In the continuous-time limit, the results found in the
Appendix yield the invariant density W(x,y) of the dy-
namics (15)-(17) with a fully parabolic potential
U(x)=(b/2)x%

2

Wi(x,y)=N exp y— m

where C:=1+b7 and N is a normalization constant.
The validity of this result is readily checked by insertion
into the Fokker-Planck equation corresponding to (15)
and (16). Then the usual transition state theory in con-
tinuous time [15] leads to the exponentially leading part

) (19)

of the escape rate k for the piecewise parabolic potential
(18):

_b 1+br
k=~ (1+b7)D,+D, (20)
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for small noise strengths D;. This result agrees with the
exponentially leading part of the discrete-time rate (8) in
the continuous-time limit. The determination of the
preexponential part of the rate for a cusp-shaped barrier
in the presence of colored noise is a well-known unsolved
problem. In particular, the preexponential part of the
rate (8) becomes wrong in the continuous-time limit, as
can be seen by comparison with the known result for the
special case of white noise D, =0 (see Sec. 7.E.2 in [15]).

The discussion of the rate (20) is similar to the
discrete-time case: Assuming that the white noise
strength D, is independent of the correlation time 7, the
rhs of (20) can be rewritten analogous to (11), showing
that the qualitative behavior is the same for any choice of
D,, in particular D; =0. One easily sees that both a 7-
independent variance (y (¢)?) of the barrier fluctuations
[implying D,(7)=D,(0)/7] as well as a T-independent in-
tegral autocorrelation f by (y(2)y(0))dt [implying
D,(r)=D,(0)=const] do not lead to resonant activation,
at least in the exponentially leading part of the rate con-
sidered here.

Recently, the escape problem (15)—(17) has been solved
[9] by means of a generalized unified colored-noise ap-
proximation (UCNA) for very general potentials U(x)
and multiplicative coupling of the Ornstein-Uhlenbeck
noise, i.e., with an additional function g [x (z)] multiply-
ing y(¢) in (15). For our special model (15)—(18) the ex-
ponentially leading part of the UCNA result is given by

b 1+b1

Ink 2D, +D, (21)
for small noise strengths D;. This expression agrees with
the exact result (20) in the absence of thermal noise,
D,=0, and for vanishing correlation time 7=0 of the
barrier fluctuations, but not in general (a similar observa-
tion was noticed in [16]). The strange feature of the
UCNA rate (21) is that it stays 7 dependent in the ab-
sence of the barrier fluctuations D, =0.

The same system (15)—(17) with rather general poten-
tials U(x) and multiplicative coupling of the Ornstein-
Uhlenbeck noise was considered in [2]. There, it was ar-
gued that for fixed integral autocorrelation
Jo(y(t)y(0))dt of the barrier fluctuations, i.e.,
D,(t)=const, in the limit 7— o the decay becomes
nonexponential and the mean exit time is larger than in
the absence of the barrier fluctuations D, =0. However,
since in the limit 7— oo, the variance {y(¢)*) of the bar-
rier fluctuations vanishes for D,(7)=const, it seems obvi-
ous to us that this limit is equivalent to switching off the
barrier fluctuations, i.e., D, =0, in agreement with (20).

V. SUMMARY AND CONCLUSIONS

We considered the discrete-time dynamics (1) additive-
ly disturbed by weak Gaussian white noise (thermal
noise) and weak Ornstein-Uhlenbeck noise (barrier fluc-
tuations) of correlation 4. For the deterministic part (6)
of the dynamics, we chose a piecewise linear map with
constant slope B. By means of a transition state theory,
we derived the central rate formula (8)—(10) which is ex-
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act up to exponentially small corrections in the noise
strength €, in agreement with the numerical results in
Table I. Then we discussed the escape rate as a function
of the correlation 4 under the usual assumption [4-6,9]
that the thermal noise coupling is A4 independent,
K, =const, whereas the colored-noise coupling may still
be 4 dependent, K,=K,(A4). For any choice of K,(4),
the qualitative behavior of the rate was shown to be the
same for arbitrary values of K, in particular for K, =0
describing the escape problem with Ornstein-Uhlenbeck
noise alone. Choosing K,(A4) such that the variance
(p2}) of the barrier fluctuations becomes independent of
the correlation A, no resonant activation (maximum of
the escape rate) was found in contrast to the Doering-
Gadoua model [4-6]. With K,( 4) such that the integral
autocorrelation 3 _,(y,yo) of the barrier fluctuations
becomes A independent, resonant activation occurs pro-
vided V'5—2 < B <1. The resonant correlation time is €
independent and of the order 1 in our case, unlike the
Doering-Gadoua model where it is comparable to the in-
verse rate [5,6]. A common feature of both models is that
resonant activation is not a prefactor effect but is present
already in the exponentially leading part of the rate. In
the continuous-time limit we found that all the above
properties of our model stay true except that resonant ac-
tivation is absent in the case of fixed integral autocorrela-
tion, at least in the exponentially leading part of the rate.

Similar to the Doering-Gadoua model, the very simple
system considered here allows for rigorous results but is
rather far from a realistic physical situation of interest.
In particular, it is unknown how the intensity of the bar-
rier fluctuations typically behaves as a function of the
correlation time, which has been seen to play a crucial
role for any kind of “resonant” extremum of the rate. (In
the Doering-Gadoua model a correlation-independent
variance of the barrier fluctuations is suggestive, but not
at all the only possibility.)

A stochastic process describing an overdamped parti-
cle in one dimension is known to show a richer behavior
in discrete than in continuous time and, as far as weak
Gaussian white noise is concerned, is also more difficult
to handle [12-14,17,18]. On the other hand, in the case
of weak Ornstein-Uhlenbeck noise, the present investiga-
tion gives an example for which rigorous results includ-
ing preexponential contributions are easier to obtain in
discrete than in continuous time. We expect that the
same stays true also for less simple maps than the one
considered here, offering a promising new approach [10]
also to the colored-noise debate in continuous time [11].
Work on rigorous results for piecewise linear continuous
maps and qualitative results for more general smooth
maps is in progress. A variety of rigorous results is not
only of interest in order to identify specific and common
properties of different models but also in order to check
approximative treatments of more general systems, as
seen at the end of Sec. IV.
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APPENDIX: CALCULATION OF THE RATE

We first consider the two-dimensional Langevin equa-
tion (1) and (2) but with the fully linear map

P(le)= f—w dé—(l)f—w d§(2)P(§(1))P(§(2))8[xl_.f(y

With (3) and (A1) we infer

1 _
P(x|ly)=———=-exp{ —[x—Fy]*K "![x—Fy]/€} ,
y VKK, p{—I y] [x—FEy]/€}

(A4)

where the plus sign indicates transposition and where

K, ©
0 K,

B 1
0 4

, K:= . (AS)

In order to solve the master equation (A2) we use
methods introduced in [17,18]: For the invariant density
W (x), we make the WKB ansatz

W(x)=2Z(x)e $x/e€ (A6)

where the e-independent generalized potential ¢(x) de-
scribes the exponentially leading part of the invariant
density, while the prefactor Z (x) accounts for the nonex-
ponential part and in general still depends on the noise
strength €. Combining (A2), (A4), and (A6) yields

(1— AB)X(1—B?)
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f(x,y)=Bx +y (A1)

for all x ER instead of (6). The invariant density W (x) is
governed by the master equation [19]

W(x)=f_°°wdyl f_:dsz(xly)W(y) , (A2)

where x represents a two-dimensional vector with com-
ponents x; and x, and similarly for y. In (A2) P(x|y) is
the transition probability to go from y to x in one time
step and, according to (1) and (2), is given by the
Frobenius-Perron equation

Y2 — VK EVS(x,— Ay, —VK,EP) . (A3)
[
Z(x)e —¢(x)/e— [ ® __dy_l__
-1/ 7eK,
" B2y Hmae (a7
-« v/ 7eK,
where
H(x,y):=¢(y)+[x—Fyl]*K "'[x—Fy] . (A8)

For small €, the rhs of (A7) can be evaluated by means of
a saddle-point approximation. Since the prefactor Z (y)
is nonexponential in €, comparison of the exponentially
leading parts-on both sides of (A7) implies

¢(x)=minH (x,y)=:H[x,g(x)], (A9)
y

where the last equality is an implicit definition of g(x).
A straightforward but tedious calculation shows that
the unique nontrivial solution of (A9) is given by

¢(x)=x"®x, g(x)=F '(1-K®)x, (A10)

where 1 is the unit matrix and

— A(1— AB)(1—B?)

K
— A(1— AB)(1—B?) 1—,421;2+K—‘(1—/12)(1—,419)2

2

=]
I

(1— AB)K | +K,

A more natural proof that (A10) and (A1ll) solve (A9)
and, in particular, the derivation of this solution is con-
veniently carried out within the framework outlined in
[18] (similar to the continuous-time case [20], one has to
solve an inhomogeneous linear equation for @Y. Due
to (5) and (7), the matrix ® in (A11) is positive definite.
The matrix F~}(1—K®) in (A10) stays finite even in the
limits 4 —0 and B—0 where F~! in (AS5) diverges.

(A11)

—

With (A10) and (A11) it follows that H(x,y) in (A8) is of
the form

H(x,y)=¢(x)+[y—gx)]"H[y—g(x)],
H:=®+F*K7'F.

(A12)

(A13)

Now the saddle-point approximation on the rhs of (A7)
can be carried out, implying
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Z(x)=Z[g(x)][K,K,Det(H)]" /% .

A simple calculation yields Det(H)=(K,K,)”!. Hence
we arrive at
Z(x)=const=N , (A14)

where N is a normalization constant. By insertion into
the master equation (A7), one finds that our solution
(A10) and (A1l4) is actually not only valid within the
saddle-point approximation, i.e., for small €, but also is
strictly correct for arbitrary €. In other words, for the
globally linear dynamics (A1) the invariant density is
given by a Gaussian distribution about the point attractor
at the origin, as was to be expected. In passing, we note
that by integration of the invariant density (A6), (A10),
and (A14) over x,, the following reduced density W(y)
for the x, =y dynamics (2) is found:

172 2
ex _ I—A 2
P K,

1—4°

W =

(A15)

From the saddle-point approximation on the rhs of (27)
about y=g(x), we can infer that for small noise strengths
€, almost all particles which visit the point x at a certain
time step were close to the point y=g(x) at the preceding
time step. In other words, they arrived along the most
probable path g(x),g(g(x)),... at the end point x.
From (A8)—(A10) it follows that

d(x)=¢[g(x)]+x " PKPx . (A16)

Since PK P is positive definite, the generalized potential
obeys ¢[g(x)]<@(x) except for the trivial case
x=g(x)=0. Consequently, for any x+0, the generalized
potential along the most probable path g(x),g[g(x)], . ..
is strictly smaller than at the end point x.

The generalized potential ¢(x) in (A10) can be rewrit-
ten as
2

@
12 , (A17)

22

X2 X

where ®;; are the components of  and

_Det(®) _ (1—4*)(1—A4B)1—B?)

Ag:

(A18)

Note that the positive definiteness of @ guarantees
®,, > 0. Restricting ourselves to the half-plain

G:=[1,o]XR, (A19)

the generalized potential (A17) has a global minimum at
the point

xS::(l,(Dlz/(Dzz) ’ (A20)

Dy (1—A2)(1— AB)K,+(1+ AB)K,
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i.e., ¢(x)> ¢(x,) for all xEG\ x,. Thus the most prob-
able path to the end point x; is entirely contained in the
complement G:=R?\ G of G. The same property applies
for all end points x in a small neighborhood of x; because
of continuity reasons and obviously for all end points x
with @(x)<é(x;), in particular for x within a small
neighborhood of the origin.

Next we return to the escape problem for the piecewise
linear model (6) of Sec. II. We first consider the situation
that all particles which enter the domain G in (A19) are
removed at the next time step. Thus the dynamics of the
nonabsorbed particles within G is still described by the
map (A1l). For small noise strengths € the system ap-
proaches a pseudoinvariant state described by a pseu-
doinvariant density W(x) [13]. The escape rate k from G
into G is given by the number of particles within G
(which are removed at the next time step) divided by the
population within G:

B [ cW(x)dx

k= — .
[ sW(x)dx

(A21)

For small noise strengths € and neglecting normaliza-
tion constants, the probability W(x) to be at a certain
point x is equal to the invariant density W (x) of the fully
linear system (A1) provided the most probable path g(x),
glg(x)], ... is entirely contained in the domain G since
in this domain the piecewise and the fully linear dynam-
ics agree. As seen above, this is in particular true for end
points x within small neighborhoods of the origin and of
the point x; in (A20). In the opposite case where the
most probable path of the fully linear problem leaves G,
one has W(x) < W(x) since this path does not contribute
to W(x). Taking into account that within G and G the
invariant density W(x) has very pronounced absolute
maxima at x=0 and x=x,, respectively, it follows that
W(x) in the rate formula (A21) can be replaced by W (x)
up to exponentially small errors in €, i.e., up to a factor
140 (e /%) with an e-independent ¢ >0. By means of
the above results for W(x), a straightforward calculation
yields the final rate formula (8)-(10).

Clearly, the dominant contribution to the rate (A21)
stems from particles which escape into a close neighbor-
hood of x; within G. If they were not removed at the
next time step, the overwhelming majority of them would
closely follow a deterministic path during the subsequent
time steps. From the piecewise linear dynamics (6), it
then easily follows that they arrive at a small neighbor-
hood of the point attractor at x =x,=2, y =x,=0
within a few time steps. In particular, recrossings into
the region G can be neglected once a particle has left G.
Thus, the rate (8) is correct up to exponentially small
corrections in € also with respect to escapes from G into a
small neighborhood of the point attractor at x=(2,0).
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